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Abstract

Problem Solving systems customarily use back-
tracking to deal with obstacles that they en-
counter in the course of trying to solve a problem.
This paper outlines an approach in which the pos-
sible obstacles are investigated prior to the search
for a solution. This provides a solution strategy
that avoids backtracking.

Introduction

Many weak methods of problem solving are based upon
the idea that a problem can be solved by choosing a
sequence of goals and satisfying them in some order.
GPS (Newell and Simon 1972) was amongst the first
to set out this approach. Since then the work of Ernat
and Goldstein (Ernst and Goldatein 1982), Korf (Korf
1985), and Guvernir (Guvernir 1987) has built upon
this idea. The culmination of this kind of approach is,
in some ways, the Soar system, which through the
creation of a large production system with learning
capabilities is able to incorporate many of the weak
problem solving systems into a single system.

If one compares Soar and Korf’s system they take
quite distinct approaches to the problem of what
should be learned and when it should be learned.
Korf’s system is able to specify in advance exactly
what macros it needs to learn. This will yield bene-
fits in the system’s ability to determine which macro
to use at a given point in the solution, at the price
of requiring long searches for some of the more com-
plex macros. Soar on the other hand learns only the
solutions to the difficulties that actually arise. This
conservative attitude toward learning means that the
system can encounter problems in matching expensive
chunks that do not arise in Korf’s situation.

This paper looks for a half way house between these
two strategies. We would like to obtain the benefits
of easier pattern matching afforded by Korf’s system
without having to pay the price of the large amount
of search that his system needs. Our approach is to
show that for a substantial number of problems one can
anticipate the impasses that will be encountered by a
problem solver. These can then be modeled and solved

94

in small pieces of the larger problem, thus avoiding the
deep searches required in Korf.

Pr~«lems, Strategies and Impasses
We rev - vriefly the definitions that we will need. A
consen; .. a8 to the appropriate definitions seems to be
emerging (Banerji 1983), (Benjamin et al. 1989), and
(Niisuma and Kitahashi 1985). Our definitions follow

this trend. Some of them have appeared previously in
(Hodgson 1989).

Problems and Subproblems

Our definition of a problem is based upon the idea of
an action.

Definition 1 A free problem P is a triple (S,Q,qa)
where a is a partial map

a:Sx1—S

The set S is called the state space of the problem
and the set 2 is the move set of the problem. The
map a represents the effect of the moves on the state
space. The effect of a move w on the state s is to give
the state a(s,w). The element a(s,w) fails to exist
precisely when (s,w) is not in the domain of q; that is
when w cannot be applied to the state s. A sequence
L = (wy,...,wy) of moves on P is called admissible at
s if the composition

a(s,L) =a(a(...(s,w1),w3)...,en)...)
exists,

‘We need a notion of maps between problems.
Definition 2 Given two problems P, = (51,Q;,0,)
and P; = (S3,Q3,a3), with o pair of maps f : 5, —
S3 and g : Q2 — 3 The pair (fg) defines a strict
homomorphism F : P, — P, provided that
1. Given two poinis s, and 33 such that f(s1) = f(s3),

then if the move w applies to sy il also appplies to
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2. The equation

f(a1(s,u)) = az(f(s), 9(u))
is satisfiea in the sense that whenever the right-hand
side ezists 30 does the left-hand side.



A strict homomorphism F is ¢ monomorphism if
the underlying maps f and g are one io one.

We now turn to the notion of (strict) isomorphism.

Definition 3 Two problems P, and P; are strictly
isomorphic if there ezists a pair of mutually inverse
strict homomorphisms F : Py = P, and H: P, = P,
between them.

We can use monomorphisms in a natural way to de-
fine subproblems.

Definition 4 Let P = (S5,f1,a) be a problem. A prob-
lem Py = (Sy, €, 80) s a (strict) subproblem of P
if there ezists a problem monomorphism (f,g) = F :
Py = P.

It is worth noting that the requirement that the un-
derlying state map be a monomorphism has the ef-
fect that even the weaker definitions of homomorphism
such as the weak homomorphism of Niisuma and Kita-
hashi (Niizuma and Kitahashi 1985) lead to the same
subproblems.

As an example of the concepts developed here we can
take the sliding tile pussles. In particular we might
take the fifteen pussle. The state space is then the
set of all legal arrangements of the fifteen tiles and
the blank in the 4 x 4 array. The move set can be
given by the set @ = (U, D, L, R} where the letter
indicates the direction in which a tile is moved. A
typical subproblem can be obtained by restricting one’s
attention to the tiles in the top half, (assuming that the
blank lies in the top half). Moves on this subproblem
are restricted to be those in which the blank remains
in the top half of the array.

Strategies

So far we have not recognised that problems are sup-
posed to represent things that are to be solved. To do
this we define a problem instance for a problem P
as a triple (P,0,G) where o is a state of P called the
start state, and G is a subset of the state space called
the goal set. A solution to the problem instance is a
sequence ¥ of moves which is admissible at o and such
that a(s,X) € G.

Informally a strategy is a sequence of intermediate
subproblem instances between the initial state and the
goal. We can distinguish two classes of strategies. In
the first the successive state spaces overlap; we call
these ample strategies. In the other the successive state
spaces are disjoint; we call these abutment strategies.

Definition 5 An ample strategy for ¢ problem in-
stance (5,Q,8,0,G) is a sequence {Py,..., P} of sub-
problems of P = (S,0Q,a) such that the siate spaces
of successive subproblems have non-trivial intersection,
thatis S;_1NS; #0Vi€ 1,...,k. Furthermoreo € Sp
and G C §;.

An abutment strategy for a problem instance is
o sequence {Py,..., Py} of subproblems of P such that

1. UESQ,
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2. GC Sy,
3. 5;_1NS;=0Viel,.. .k,

4. for ecach i € 1,...k there ezists at least one pair
(2i-1,z:) of points of S such that there is a move
w € Q for which a(z;_q,w) = z;.

A solution is based upon a sirategy if it is obtained by
concatenatling a sequence of solutions to the interme.
diate subproblems.

We illustrate the two kinds of strategies with exam-
ples. For our example of an ample strategy we con-
sider the case of Fool's disk. This problem has been
discussed by Ernst and Goldstein (Ernst and Goldstein
1982). It consists of four concentric rings each of which
is free to rotate about the common center. Each ring
has eight numbers on it, appearing at 45 degree inter-
vals around the ring. The goal of the problem is to
rotate the rings so that the sum of each radius is 12.
The standard strategy is as follows:

e By using only rotations through 45 degrees, make
the sum on each pair of perpendicular diameters 48.
Py thus has the same state space as P but a smaller
move set.

e By using only rotations through 90 degrees, make
the sum along each diameter 24. P; has as state
space a set of states in which the sum on each pair
of perpendicular diameters is 48. The move set is
again a subset of the original one,

e By using only rotations through 180 degrees make
the sum along each radius 12. P; has as state space

a set of states in which the sum along each diameter

is 24 and once again the move set is a subset of the

original.

This strategy, when successful (about which more
later), reduces the amount of search from 82 moves
(the center ring can be kept fixed) to 8 x 3 moves.

Our second example is an elegant solution of the
five pussle that has been presented by Banerji (Banerji
1990). He observes that there is a way to represent the
states of the five pussle by points on the faces of a
dodecahedron. The sequence of moves that circulates
the blank around the the circumference of the the puz-
sle moves through all the states on one face. Passage
from one face to another is effected by the moves that
slide the blank up and down in the centre column. The
strategy in this case consists of choosing the sequence
of faces (each of which is a subproblem) through which
one must pass from the start to the goal.

There is an important difference between these two
examples. In the second example once the strategy is
chosen no backtracking over the solutions to the inter-
mediate problems is necessary but in the case of the
fool's disk it may be necessary to backtrack since it is
possible that the first arrangement in which the sum
on all the diameters is 24 may not lead to a solution
and another arrangement is needed. Niizuma and Ki-



tahashi (Niizuma and Kitahashi 1985) give a sufficient
condition for this not to occur.

Proposition 6 Suppose that for each subproblem oc-
curring in a siralegy it is the case that any instance
of the subproblem can de solved then no back tracking
will be needed to construct a solution to the original
problem following the strategy.

It may seem that the restriction on the state spaces
of the intermediate problems is unduly restrictive. Yet
it is exactly this that is needed to avoid backtracking.
Thus one aim of our approach is to find strategies for
which this hypothesis is true.

Impasses

At any stage in the execution of the strategy one has
a subproblem instance (F;, €, a;, 0i, G;) where in the
case of an ample strategy G; is S; N S;;, or in the case
of an abutment strategy G; is the set of points of S;
from which a move to S;;; is possible. We have seen
that the strategy proceeds smoothly as long as these
intermediate problems can be solved.

Definition 7 An intermediate problem for which
there i3 no solution is called an impasse for the strat-
€gy.

This terminology follows one case of the use of the
term in the Soar system, in so doing we are also fol-
lowing the usage of Ruby in (Ruby and Kibler 1989).

It is important to note that our definition of an im-
passe in a problem is dependent upon the strategy cho-
sen to solve the problem. Thus in the Banerji solution
to the five puzzle there are no impasses since each in-
termediate goal is attainable. By contrast in the more
usual method in which the tiles are brought into posi-
tion in a prearranged order there are impasses.

Learning the Impasses

Our approach to finding impasseless strategies is to im-
prove an existing strategy by modifying the subprob-
lems so that they do not contain any impasses. As an
example we show that in the case of Fool’s disk we can
do this by enlarging the intermediate problems. This
need not always be the case as we shall see in some of
the examples that we discuss.

For the Fools’ disk case we can consider the inter-
mediate problems defined as follows:

e By using only rotations through 45 degrees, make
the sum on each pair of perpendicular diameters 48,
P, thus has the same state space as P but a smaller
move set.

o Let P, have as state space the set of all states in
which the sum on each pair of perpendicular diam-
eters is 48. The move set is again a subset of the
original one. It may contain some moves through 45
degrees.
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e Let P, have as state space the set of all states in
which the sum along each diameter is 24. The move
set may contain moves through 90 or even 45 de-
grees.

It is clear that for these problems no backtracking
into earlier problems is necessary.

Finding the Impasses

Problem solvers such as Soar (Laird et al. 1986) and
the stepping stone method (Ruby 1989) find the im-
passes in the course of attempting to satisfy the cur-
rent goal. A search procedure is then invoked to resolve
the impasse and the resolution of the impasse become
part of the problem solver’s knowledge about the prob-
lem. This is an accurate representation of much human
pro ~.em solving, but it does not tell the whole story.
O¢ ‘aced with a problem a human will actively con-
si .e difficulties that may arise in the course of the

re. ion of the problem to see if they can be solved.
G Zivantage of such an approach offers is that it
al:. 1 ome to take advantage of efficient storage tech-

niques once one has determined that a small group of
chunks will be adequate to solve the problem. This
addresses in some measure the problem of expensive
chunks (Tambe et al. 1990).

We give here a recognition criterion that forms the
basis for an algorithm that can be used to produce
impasses in problems. The criterion will be stated for
the cases where the strategy is based upon the idea
of reducing a set of features to their goal values. We
begin by formalising this notion.

Given a problem P a feature on P is a map

f:8=1T(f)

between the state space of P and some finite set 7(f)
called he target of of the feature. A set F of features
is called discriminating if given any two state sy and
sy of P there is some feature f € F such that f(so #
f(81). The set is called adequate for a goal G if given
any state s which is not a goal state there is some
feature f such that f(s) is not a member of f(G).
The strategy associated to an ordering {fi,..., fi}
of a set of adequate features is the sequence of subprob-
lems P; = (S;,Q,a;,0;, Siy1) where S; is the set of all
states for which the features fi,..., fi_1 have goal val-
ues, a; is the restriction of a to a=15; N (S; x N). For
these strategies we can give a recognition criterion for
impasses.
Proposition 8 Let P; = (5;,Q,a;,04, Siy1) be an in-
termediate problem for o sirategy based upon an ade-

guate set of features, then P; is an impasse instance if
either

e No move changing the value of f; applies to o;, or

o Any sequence of moves on P that reduces f; from o,
must change the value of at least one of fi,... fi_,.



From this point forward the argument goes as fol-
lows. First, find an impasse. Second, produce a
“smaller” example of the same impasse. Thirdly, ex-
pand the example to a subproblem in which the im-
passe can be resolved. Finally, show that the problem
has a strategy based upon the new set of subproblems.

Examples of Impasses

To obtain an impasse of the first kind we can turn to
Sussman'’s anomaly in the blocks world. The impasse
can be succinctly described by the following figure.

ol

C
Sussman’s Anomaly

Although one can get “closer” to the goal by putting
B on top of C in the position on the left hand side it
will be necessary to undo this since the goal of putting
A on B requires that the top of A be clear. Thus no
move that will achieve the desired position for A is
available.

To get an example of the second kind we con-
sider the fifteen pussle with the initial strategy
of moving the tiles into position in the order
1,2,3,4,5,6,7,8,9,13,10,14,11,12,15 (the ordering
at the end is chosen to be a good one, we do not need
to go this far though).

1 2 3 5
15 6 4
9 10 12 11
13 14 8 7

A Fifteen Pussle Position

In the diagram above we find an impasse when we
come to try and locate tile 4. The smallest subprob-
lem in which this impasse appears is the 2 x 2 up-
per right hand corner in the diagram where which
we place 3,5,4, blank reading clockwise from the top
right. (The choice of § is not significant.) This can
be solved in the five pussle that is obtained when we
restrict attention to the top two rows and rightmost
three columns of the pussle. Furthermore we can cover
the state space of the fifteen pussle with copies of the
five puzzle in the way that will be detailed in the next
section and obtain an impasse free strategy.
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In fact the recognition criterion given in proposition
8 permits one to write a simple program that will gen-
erate impasses in both these cases. Furthermore the
expansion of the subproblem described in the example
of the sliding tile pussle will provide the means for re-
solving the impasses. This is the subject of the next
section.

Atlases: Solving the problem

In this section we will deacribe a modified version of
the notion of a strategy. In some sense it is a meta-
strategy in that it is designed to produce an impasse
free strategy for a problem by choosing the sequence
of subproblems from a set of subproblems whose image
cover the whole of the state space. The basic idea is
that one determines what impasses may arise in the
problem and then expands them to subproblems that
resolve the impasses. These impasse resolving prob-
lems are then used to cover the state space of the prob-
lem giving rise to a new strategy.

Charts

It is convenient to introduce two auxiliary notions.
These are chart and atlas. The idea is that chart are
pieces of a problem that are all modeled on some com-
mon subproblem. The important charts will be the
ones that contain the resolutions of impasses.

Definition 9 Let P be a problem and s a state in P.
Then a chart for P based upon a problem P, is a prob-
lem monomorphism Py — P whose image contains s.

An atlas for a problem P is a finite collection A of
charts such that every point in the state space of P is
in the image of some chart of .A.

We define the images of two charts f, : P, — P and
fa: Py — P to be incident if either

1. fi(P1) N fa(P3) contains at least one move common
to both subproblems, or

2. there exists a state syefi(P;) and a state szef;(P;)
such that there is a reversible move w with a(s,,w) =
33.

The abstraction of a problem associated to an atlas is
the graph whose vertices correspond to the embedded
charts of the atlas with an edge between each pair of
incident charts. A sequence of pairwise adjacent charts
is called a chain.

We will want to distinguish between two types of
abstraction. An abstraction in which the charts over-
lap will be called an ample atlas. One in which all the
charts are incident but do not overlap will be called an
abuiment atlas.

We give two examples of abstractions associated to
an atlas. The first is based upon the earlier solution of
the five pussle. Here the charts consist of the images of
the sub-problem of the five puzzle consisting of those
states that are obtainable by moving the blank around
the circumference of the puzsle. As Banerii remarks



(Banerji 1990) this represents the accessible states of
the five puzszle on the faces of a dodecahedron. The
faces of this are the points of the abstraction and the
edges (which correspond to the move of the blank up or
down in the middle column) correspond to the edges.
We can obtain an abstraction of the blocks world
by “welding together” adjacent blocks so that we have
only three big blocks to consider. Each big block is
itself a blocks world and the three block world already
contains the generating example of the impasse.
These two examples suggest that the correct choice
of an atlas will allow one to give an impasse free strat-

egy.

The Atlas Meta-strategy

Atlases serve as abstractions of a problem. Given a
problem instance and an atlas on a problem we can
define a problem instance on the atlas. The provlem
is to find a chain joining a chart contaiz.ng the atart
position to a chart whose image intersecis the goal.

Definition 10

Given an impasse I = (P, o, 0,00, Go) on a prob-
lem, a chart f : Py — P ts said o resolve the impasse
if there is a monomorphism of Py into P, and if the
instance I can be solved in Py.

The main ideas of this paper can be summed up in
the following.

Proposition 11 Let {Py,... Py} be a sirategy for o
problem P and let T denote the set of impasses for this
strategy. Let {Q1,...,Qn} be o set of charts of P such
that each impasse is resolved in ot least one of the Q;.
There is an atlas A based upon the charts Q; whose as-
socialed meta-sirategy gives impasseless sirategies for
P.

The next section outlines a proof of this result and to
a result on the length of the solutions that it produces.

Solutions and Their Length

The ideas required to construct the impasseless strat-
egy are outlined below. The details have been worked
out for the sliding tile pussles, the Tower of Hanoi and
the blocks world but in a manner that is somewhat
problem dependent. Future work involves unifying the
implementation so that it applies in a more problem
independent way.

Resolving the Impasses
Let P, = (S,-,Q‘-,a;, 0‘.‘,5,'.4_1) be an impasse arising
from the strategy based upon the set {f1,...,fa} of
features on a problem P. The following sequence of
steps is used to resolve the impasse.
SHRINK

The goal of this step is to remove from consideration
those features that are not required to construct the
impasse. In general given a set of features on a prob-
lem we can restrict to the moves that affect only these

features. The required shrinking takes place by elim-
inating the features which are both fixed and whose
value does not figure in the creation of the impasse.
ENLARGE

Moves that effect the remaining features are now
added to produce a subproblem in which the impasse
can be solved. At each step the move added should
affect the smallest possible number of additional fea-
tures.

An Example

We can illustrate this process with the example of the
fifteen pussle. We saw that an impasse can be reached
when the first three tiles have been placed. The
SHRINK process reduces this to an example equiva-
lent to a three pussle in which the tiles appear in the
order 3, x, 4, blank, when read clockwise from the top
left hand corner, (x denotes one of the possible tile
values other than those already used.) We can then
EXPAND to a five puzszle, which can be either hori-
gontal or vertical in which the impasse is resolvable.

The next step is to determine whether there is an
atlas for the problem whose charts are isomorphic to
the set of subproblems obtained by resolving the im-
passes. If this is the case we then replace the original
strategy by the following one. We suppose as before
that we have a problem P with an adequate set of fea-
tures {f1,..., fa}. In addition we assume that there
is an atlas A whose charts are isomorphic to the im-
passe resolving subproblems obtained by the process
outlined above.

Using the same ordering of features that was used
for the original strategy that produced the impasses.

1. Set as the current subgoal the reduction of the next
feature to its goal value.

2. As each feature comes up for reduction find a chain
of minimal length joining the current state to a state
in the current subgoal.

3. Extract the move sequence joining the current point
to one in which the feature has been reduced.

Since the atlas contains a resolution of all impasses
this method will solve the problem whenever there is
in fact a solution.

The Length of a Solution

We can now give an estimate for the length of a solution
found using this method. We need some preliminary
definitions.

L will stand for the maximum chain length required to
perform the reduction of a feature.

D will stand for the maximum distance between two
states in a chart. When a particular chart C is r-
ferred to we will use D(C) for the distance on tk
chart. Note that this number can be infinite if t.
chart is an impasse chart.
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N will be the number of features on the problem.

n will be the number of chains required to reduce all
the features.

The first result is the following

Theorem 12 Let P be a problem with an ample atlas
and features with values of L, D, n as above. Then the
algorithm given above finds a solution of length at most
LxDxn,

Proof. For each feature the length of chain required to
reduce it does not exceed L, furthermore one each com-
ponent of the chain the length of the move sequence
required is less than D.O

The corresponding result for abutment atlases is the
following. The proof is similar.

Theorem 13 Let P be a problem with an sbutment
atlas and features with velues of L, D,n as above. The
algorithm above supplies a solution of length at most
nx(LxD+L-1).

Although these results are quite simple they give
quite good estimates. For example in the case of the
fifteen puzzle if we use the estimate of 22 as the maxi-
mum distance on the five puzsle (Banerji 1990) we get
an estimate of (22 x 3 x 15) + 3 for the length of a
solution. A more perspicuous version of the argument
yields (19 x 22) + 3.

Summary and Conclusions

This paper has presented a method for solving prob-
lems that constructs the impasses associated to an ini-
tial strategy in order to be able to find a new strategy
in which impasses will not arise,

The method can be applied to produce short solu-

tions to the sliding tile puzsles as well as to the blocks
world. Though the implementation is at this stage still
very problem dependent. Future work will produce a
version that is more general.
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